

Youssef Travaly SCOT Project Director GreenWin

Smart CO, Transformation

SCOT Project

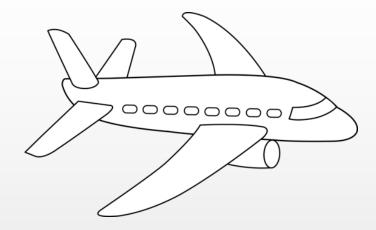
Smart CO₂ Transformation

Carbon Dioxide Utilization in Europe

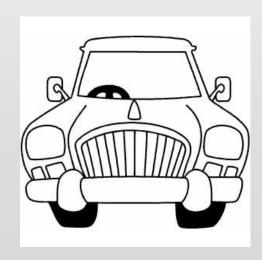
Using CO₂ as a resource

Enabling European industry to become more resourceefficient, sustainable and competitive

Imagine a future in which, you will be able to ...



Buy a mattress made with CO₂ derived polyols from major European retailers



"WE WON'T HAVE ANY COCONUTS BUT WE

Live on an island that has a self-sufficient sustainable ...

Travel on a plane powered by a percentage of CO₂ derived aviation fuel

Fill a car with synthetic fuels

Construct a truly carbon-negative house from mineralised wastes and CO₂ capturing cements

A Vision for CO₂ utilisation in Europe

- CDU can be one of the major growth areas in EU's future low-carbon circular economy
- ☐ CDU can help to facilitate Europe's energy transition
- ☐ CDU can contribute to achieving EU's aims for decreasing carbon emissions

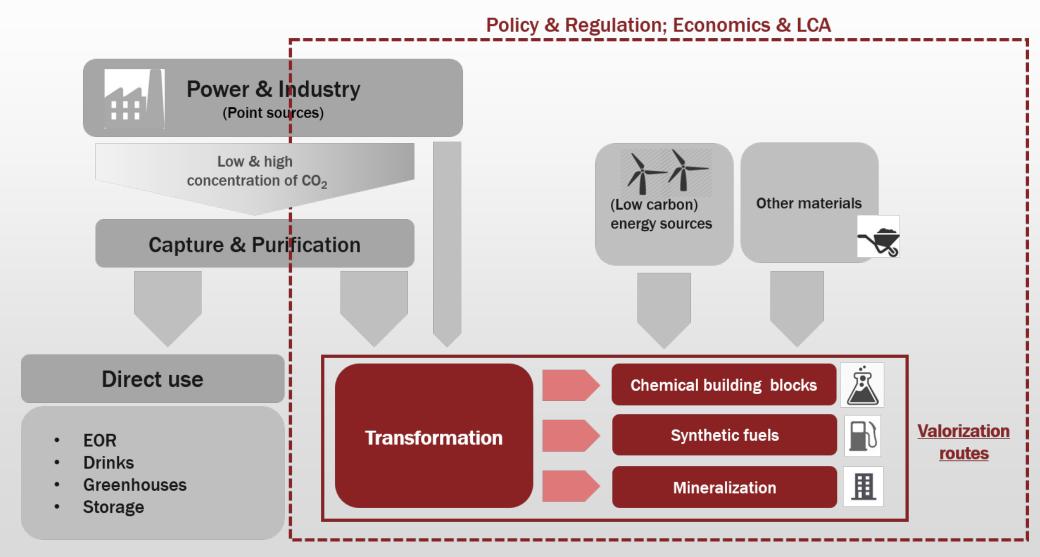
Content

1. What is Carbon Dioxide Utilization?

2. How to bring CDU products from Lab to market

3. Key Learnings from existing Cases

4. Concluding remarks



What is Carbon Dioxide Utilization (CDU)?

- ► CDU is a range of novel carbon pathways
 - ► Each pathway includes a process that uses CO₂-as a source of Carbon
 - ► ... to then **transform** it into value added **products**

The CO₂ value chain is a mutliple value creation paths

Content

1. What is Carbon Dioxide Utilization?

2. How to bring CDU products from Lab to market

3. Key Learnings from existing Cases

4. Concluding remarks

How to bring CDU Products from Lab to market? What are the non-technical levers?

Policy Incentives

- CO2 Price
- Transport/Fuel directives
- Waste directives
- Circular economy packages
- Standardisation
- Labelling

Economic Barriers

- Reducing costs
- Bridging the finance to support demonstration and pilot initiatives

The Global Value Chain

- Network of actors
- Strategic partnerships

Social Uptake

- Create demand
- Reduce risk perception
- Improve industrial understanding
- Capacity building

How to bring CDU Products from Lab to market? What are the Technical levers?

Upstream Process

- Electrolysis, coelectrolysis, Carbon capture
- Cost of processing V. reaction kinetics
- Scale
- Process intensification
- Technology choice

CO2 conversion

- Chemical catalysis
- Biocatalysis
- Hybrid chemicalbiocatalysis

Variable inputs

- Renewable energy
- Sources of CO2
- Supply of co-reactants
- Variable demand

Downstream process

- Products purification
- Energy requirements for product purification
- Tuning reaction chemistry and process to reduce byproducts
- Process intensification

Scaling-up

- Crossing the valley of death
- Investment in translational research
- Heat & mass transfer
- Continuous production
- Micro/meso/macro

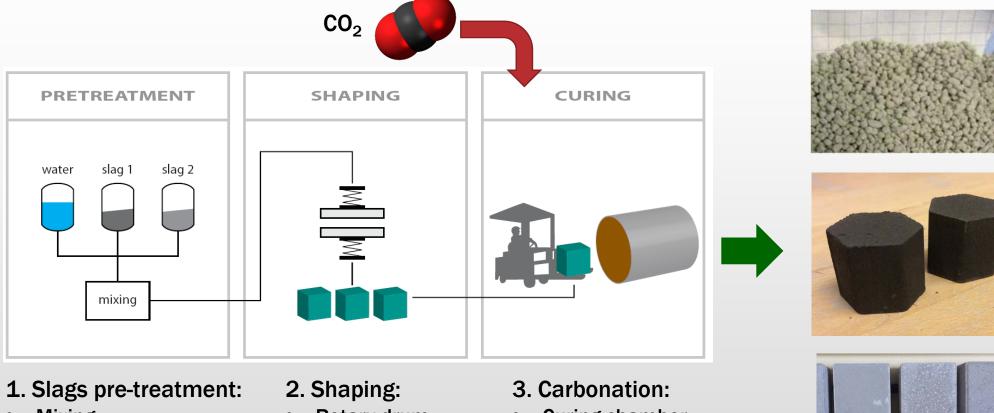
Content

1. What is Carbon Dioxide Utilization?

2. How to bring CDU products from Lab to market

3. Key Learnings from existing Cases

4. Concluding remarks

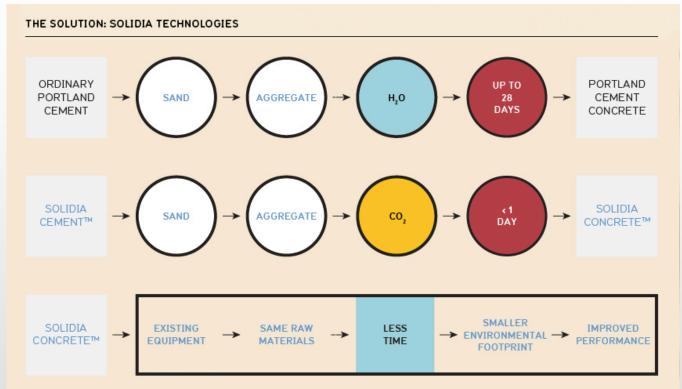


Fine fraction of steel slags recycling into Construction Materials Recoval, Belgium

O. Industrial Waste

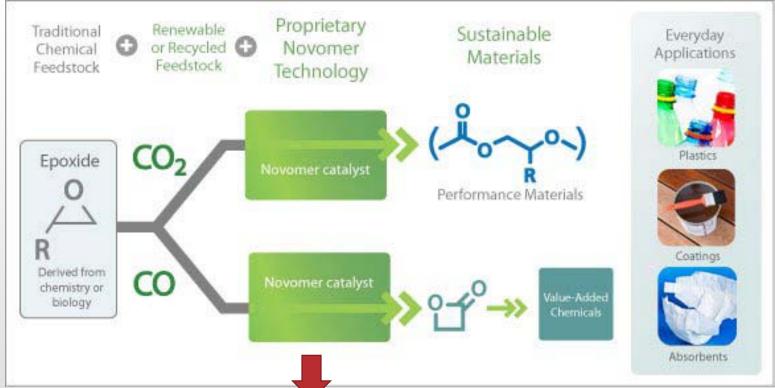
- Mixing
- Grinding
- Hydration

- Rotary drum
- Autoclave


Curing chamber

Products meet The Netherlands & Belgium standards **Demonstrated at Pilot-scale level**

Sustainable Cement & CO₂-cured Concrete Rutgers State University of NJ, US start-up Solidia & Lafarge



- Produced at traditional precast concrete manufacturing facilities
- Hardening through carbonation, in curing process with overall carbon footprint reduction by up to 70%.
- Full strength is reached in less than 24 hours vs. 28 days for precast concrete made using Ordinary Portland Cement
- Considerable energy savings and cost reductions to precast concrete manufacturers.

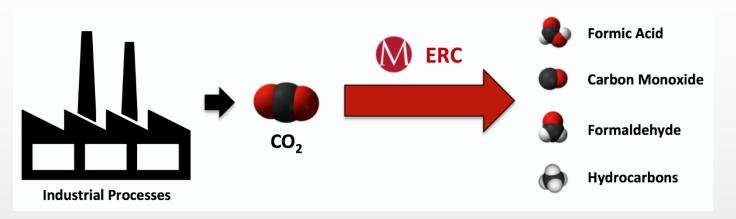
Strategic partnership in place for moving to commercialization

Co-polymerization of epoxides to make polycarbonates Cornell University, Novomer, USA with EU as target market

Technology Platform 1

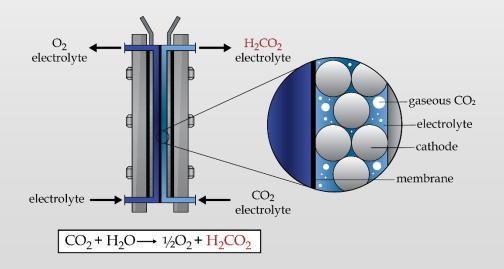
Waste CO₂ + commodity epoxide (Propylene Oxide) to form PPC

Technology Platform 2


Waste CO + commodity epoxide (Ethylene Oxide) to form PEC

Highly active and selective catalyst that maximizes CO_2 incorporation (up to 50% by weight CO_2)

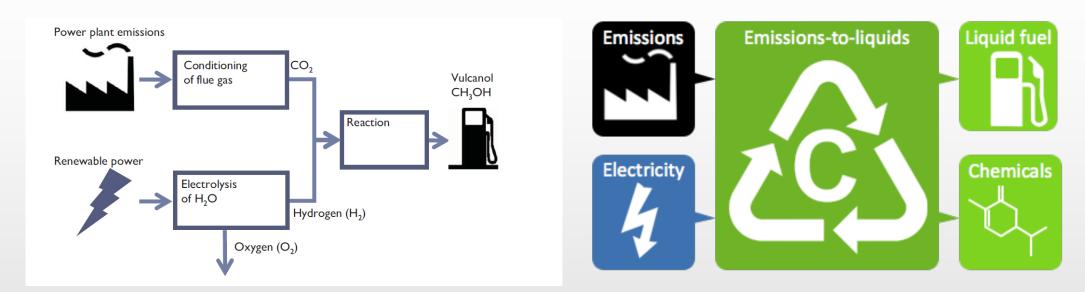
PPC polyol is available at a commercial scale and adopted into a formulation for polyurethane hot-melt adhesives by Jowat AG (Detmold, GE).



Fomric Acid/Formate, CO/Syngas & Methanol Mantra Energy, Canada

Applications in industry:

- Agriculture, textiles and leather, pharmaceuticals, oil well drilling, and de-icing.
- CO: methanol, SNG, gasoline and diesel.



- Subsidiary in the US, in order to access large-scale funding opportunities, and improve the visibility of the technology to investors and industry
- Pilot plant to be built for converting CO₂emissions from the Lafarge cement plant in Richmond, BC, into formic acid and its salts

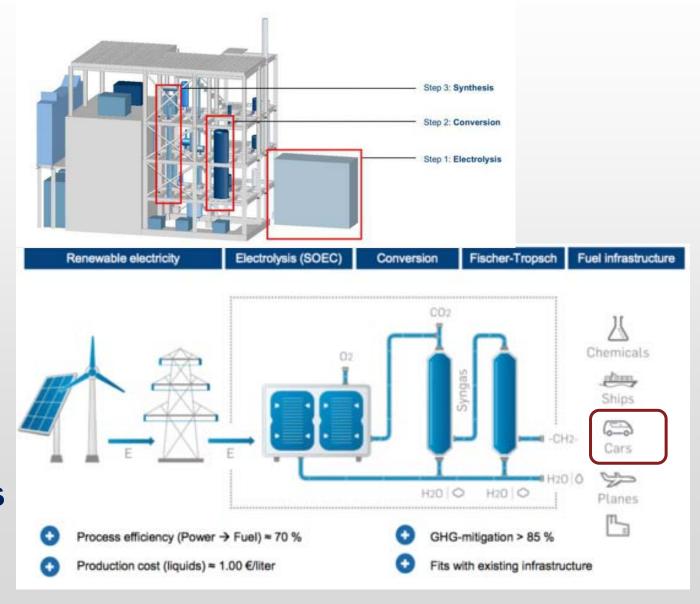
The Electrochemical Reduction Chemistry (ERC) process can be "dropped-in" to any industrial CO₂ emission source, with no retrofitting necessary

Methanol Production Carbon Recycling International, Iceland

Methanol can be used as a transport fuel and as a chemical feedstock for many common building blocks for basic materials

- Commercial scale plant CO₂ from by processing of gas emissions from a geothermal power plant
- H₂ by electrolysis of H₂O using renewable sources of energy from the Icelandic power grid (from hydro, geothermal and wind sources).
- Currently we have a 4000 metric ton/year production capacity.

Power-to-Gas Audi e-gas project, Germany


Pilot-scale demonstration of Power-to-Gas technology
Linking electricity grid with car mobility
Linking electricity grid with the natural gas network

Power-to-Liquid (petrol, diesel, kerosene, methanol) Sunfire, Germany

Integration of process steps
leading to flexible turnkey solutions
for different markets

Summary of key learnings from existing case studies

- 1. Difficult to enter the market with a new product
 - ► New materials must have superior properties and serve a specific niche market
- 2. Introduction of new competitive product takes time and innovative SMEs do not have deep pockets
 - Partnerships with key industrial players are required
- 3. The cement and building materials market is already a highly competitive low margins market
 - ► The CO₂ recycled products must be available against little or no cost
- 4. Cement and building materials tend to be virgin materials while CDU products have a history of being a waste
 - ► Standards based on the properties of the virgin materials must be relaxed
- 5. Risk against hazard debate, former waste materials have there hazardous components immobilised
 - ► The legislator acts from a hazard perceptive
- 6. The CO₂ available on the market is of too high a purity
 - ► Mineralisation units must be close to a significant CO₂ source without making the carbon dioxide too clean
- 7. Sustainable labelling might help with the introduction of a new material
 - ► Consumers/users must be willing to pay the higher price.

Summary of Key learnings from existing case studies

- 8. Strategic partnerships involving Universities, SMEs and key industrial players from the consumer side played a major role in boosting Power-to-Liquid and Power-to-Gas technologies
- 9. Long-term commitment and financial supports from government (Germany, USA) has been essential to support technology development and scaling-up
- 10. Some SMEs are trying to overcome financial barriers by relocating to countries/regions where financial supports are more accessible
- 12. Hydrogen electrolysers ► CDU routes are thought to be a strong technical candidate for the use of 'surplus' electricity, but overall, its development will be governed by its competitive nature vis-à-vis fossil-fuels and also from the other demands that may make use of 'surplus' electricity
- 13. Some SMEs managed to develop performing and cost-competitive technologies & products

Content

1. What is Carbon Dioxide Utilization?

2. How to bring CDU products from Lab to market

3. Key Learnings from existing Cases

4. Concluding remarks

Concluding Remarks The Promises of Carbon Dioxide Utilization

- 1. Make EU more resilient to fluctuations in fossil-fuel resource availability and price
- 2. Decouple economic growth from greenhouse gas emissions in order to limit the risks of climate change
- 3. Provide robust and economic solutions to manage the balance between energy supply and demands over varying timescales
- 4. Reduce the CO₂ footprint of hard to decarbonise parts of the energy system such as aviation, long-haul freight and international shipping
- 5. Stabilise and increase energy autonomy, and shift resources away from imports to internal low-carbon energy

Thank You

AXELERA :	Axelera	France	Leeds	Leeds City Council	UK
Centre for Low Carbon Futures	Centre for Low Carbon Futures LBG	UK	Service public de Wallonie	Service Public de Wallonie	Belgium
DCMR milieudienst Rijnmond	DCMR Milieudienst Rijnmond	The Netherlands	The University Of Sheffield.	The University of Sheffield	UK
C DECHEMA	Dechema	Germany	Trinomics 🥐	Trinomics	The Netherland
GREEZ	GreenWin (project lead)	Belgium	YCF WORKING FOR INDUSTRY	YCF Limited	UK

Engage with SCOT

Email us at: info@scotproject.org

Join us at: www.scotproject.org

CO₂ as resource not as waste