

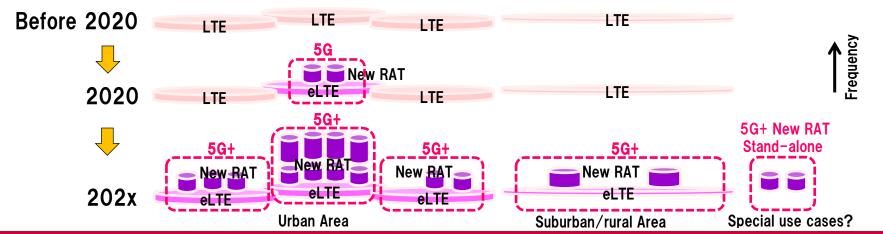
Toward 5G Deployment in 2020 and Beyond

Takehiro Nakamura NTT DOCOMO. Inc.

Time Plan for 5G and 5G+

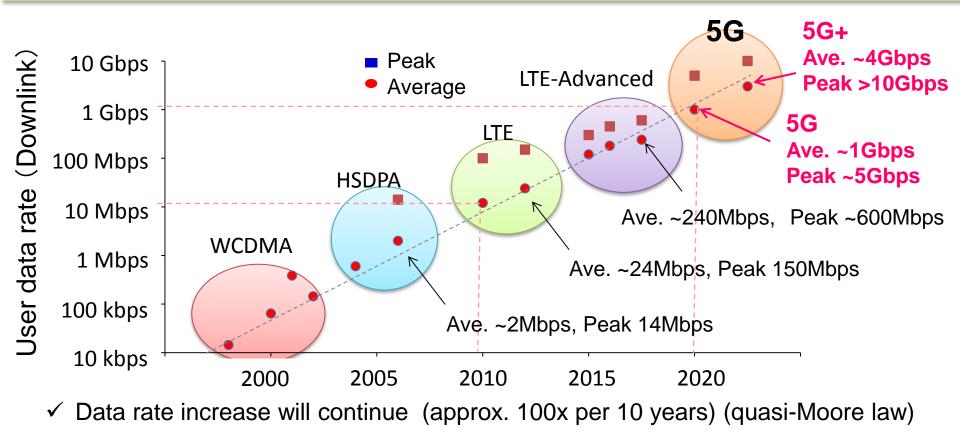
5G Deployment Scenarios

5G Phased Realization


5G will evolve by incorporating new freq. bands and technologies

→ Future compatibility is key for system design to continue evolution

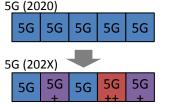
2020 2025 2030 **Evolution Future Compatibility 5G**-Introduction of 5G New RAT More higher & wider freq. bands (Tight interworking with LTE) +New bands licensed after 2020 Freq. More advanced technologies Existing frequency bands (e.g., Massive MIMO with New bands licensed by 2019 higher number of antenna Unlicensed bands? elements) **Peak: Several Gbps Peak: Above 10Gbps**


Deployment/Migration Scenarios

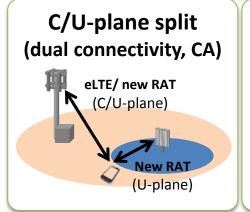
- In 2020, <u>5G</u> will be launched initially from areas, where higher performance is required, e.g., dense urban area
 - Both new RAT (Phase I) and enhanced LTE (eLTE) RAT are introduced to realize tight interworking between lower and higher frequency bands
- In beyond 2020, deployment areas for 5G are gradually expanded while introducing additional technologies and frequency bands (= <u>5G+</u>)
 - LTE (or LTE-Advanced) cell can be continuously used as eLTE cell for a long-time
 - · Stand-alone new RAT might be deployed in the future

Data Rate Improvements Toward 2020 and Beyond

Continuous improvement of user experienced throughput toward 5G/5G+

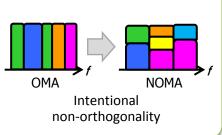

5G Key Technologies for 2020 Deployment

New RAT

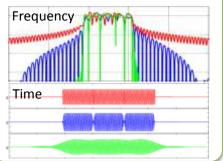

New numerology with shorter TTI Wider bandwidth and low latency New RAT,

Lean radio frame

Less inter-cell interference, energy saving, good forward compatibility



Tight LTE integration



Further cellular enhancement with massive connectivity

Well localized waveform

Massive MIMO/ beamforming

Cell range extension

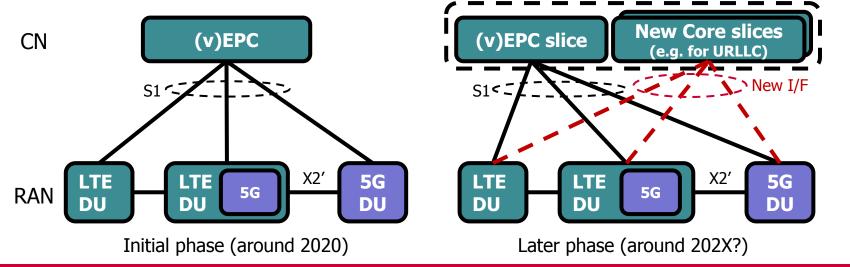
Improved spectral efficiency

Flexible duplex with unlicensed spectrum (e.g. LTE-assisted access)

Licensed Unlicensed
Band Band
(LTE) (New RAT)

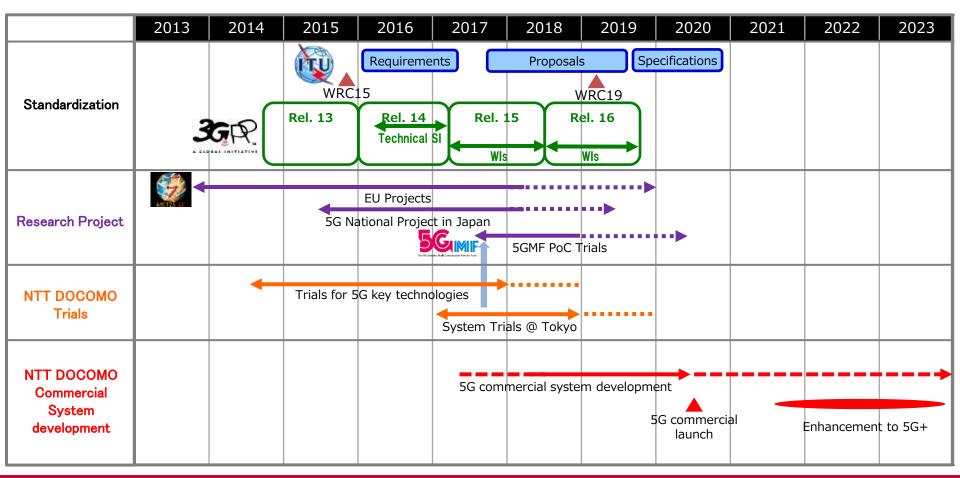
IoT related LTE enhancements

Low cost / Long battery life devices



Core network for 5G

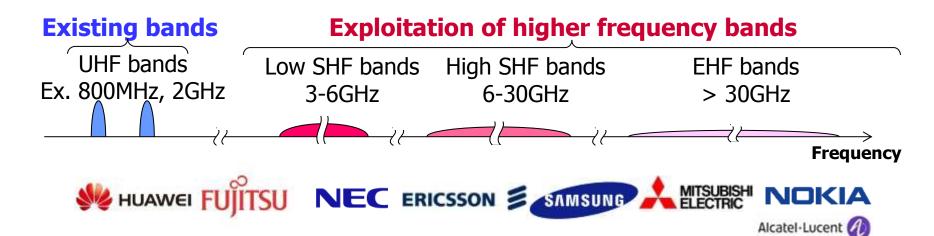
- EPC can host 5G RAN
 - EPC is well suited for eMBB and mMTC type traffic
 - Existing infrastructure can be used and also allows for early 5G introduction
- New Core can be defined if study proves it is beneficial
 - E.g. for support of new services like ultra-reliable and low-latency communications
 - But it should be supported in co-existence with (v) EPC in the form of NW slicing
- Should allow for independent evolution of RAN and CN


Lessons from WRC-15 and necessary actions

- It is becoming more difficult to achieve global/regional harmonization for frequency bands through the conventional ITU approach.
 - i.e., IMT identification in ITU first, which is followed by mobile market development in the world
- Alternative mechanisms such as bi-lateral/multi-lateral collaboration among regulators, in particular those who are mobile-friendly and/or those in major markets (e.g., KOR, US, JPN), are essential.
 - i.e., Mobile market development in major countries, which is followed by IMT identification in ITU and further market development in other countries.
 - ⇒ Mobile industry members should encourage those regulators to establish the collaboration towards early 5G development and implementation.

Study on 5G Frequency Band Candidates

Frequency	Bandwidth	For eMBB	Device availability	Spectrum availability				
Below 6 GHz				Europe	US	JPN	KOR	CHN
3.4-3.8GHz	400MHz	<u> </u>	☺	☺	3.4-3.7GHz only	er for 4G	☺	3.3-3.6GHz only
3.8-4.2GHz	400MHz	<u> </u>	☺	⊜	⊜	≘	?	8
4.4-4.99GHz	500MHz	<u> </u>	☺	⊜	☺	☺	☺	4.4-4.5, 4.8-4.99GHz only
5.15-5.35GHz*	200MHz	<u>:</u>	☺	indoor only	☺	indoor only	Indoor only in 5.10-5.25GHz	indoor only
5.47-5.85GHz*	380MHz	<u> </u>	☺	Not available above 5.725GHz	☺	Not available above 5.725GHz	☺	Not available above 5.725GHz
Above 6 GHz								
24.25-27.5GHz	3,250MHz	☺	?	©?	©? 24.25-24.45GHz, 25.05-25.25GHz	<u> </u>	Unlicensed band >25GHz is used for V2V	ESS
27.5-29.5GHz *Unlicensed freque	2,000MHz ncy bands, which ar	© e mainly used	? for Wireless LAN no	⊗ w.	⊕ 27.5-28.35 GHz	<u> </u>	○ (※ ½+ △):	⊕


Time schedule for 5G deployment in 2020

5G Experiments

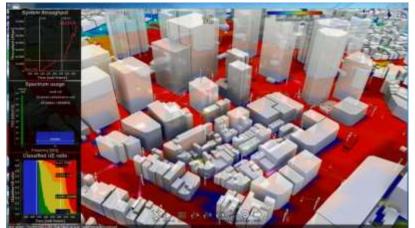
5G Experimental Trials [w/ 13 vendors]

5G experimental trials are being started since Q4 of 2014

Key devices/Chip sets vendors

System solution vendors

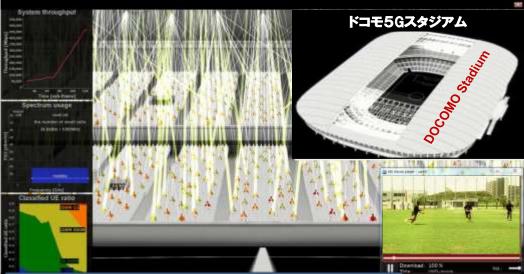
Measuring instruments vendors


Panasonic

5G Real-Time Simulator

Real-Time Demonstration of 5G Performance and Its Enabling Technologies

- <DEMO>
- **©5G vs. 5G+:**


Macro cell (3 sector/Macro cell, 20MHz@2GHz, 2×4MIMO)+Small cell (12 small cells/sector, 200MHz@5GHz, 128×4 Massive MIMO)

⇒ System throughput of 400x for 5G and beyond 1000x for 5G+

©Real-time transmission and streaming of 4K high resolution movie

Application of 5G at stadium as an example of a super dense deployment environment

- •5G can achieve several 100Mbps per user
- Simultaneous download and streaming of 4K high resolution movie by several users

5G Real-Time Simulator

docomo