

SAMSUNG

Raj Gawera
VP & MD Samsung Cambridge, Aalborg

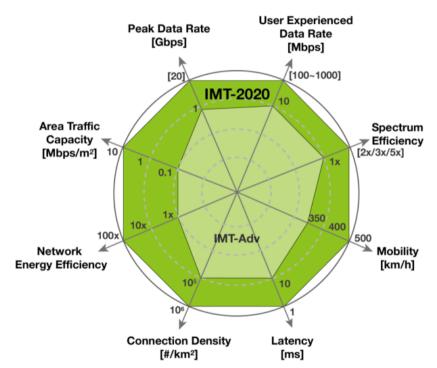
Intro to Samsung R&D in the UK

Samsung Electronics has made the UK its base for European 5G research
 Short Range Connectivity silicon development

SRUK

- Established in 1991 in the UK
- ~200 staff
- Based in Staines-on-Thames, branch in Netherlands
- Samsung Hub for European
 5G research
- Founding member of the 5GIC

SCSC


- Established in 2012
- Formed from acquisition of CSR team
- ~180 staff
- Based in Cambridge, branch in Aalborg
- Hub for devpt of BT and Wi-Fi silicon IP and SW
- Active in BT SIG, WFA, IEEE

Comparing 5G & 11ax Technical Requirements

802.11ax

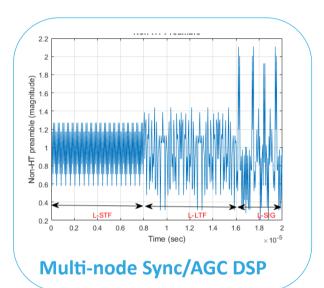
- <6GHz Frequency
- Low mobility (<=pedestrian)
- AVG Throughput Increase: 5-10x
- Increased spectral efficiency in dense STA environments
- Increased spectral re-use in overlapping networks
- Increased robustness in outdoor propagation environments

 802.11b
 802.11g
 802.11n
 802.11ac
 802.11ad
 802.11ad
 802.11ax
 802.11ay

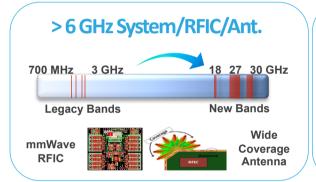
 11Mbps
 54Mbps
 600Mbps
 6.9Gbps
 7Gbps
 8.4Gbps
 20Gbps

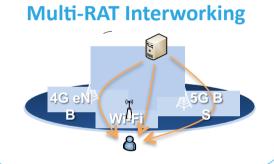
ITU-R WP5D, TEMP/548-E

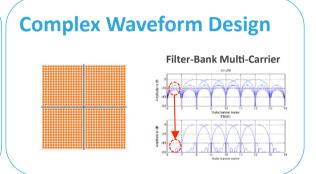
© 2015 Samsung DMC R&D Center

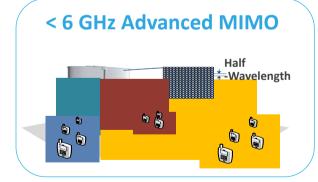


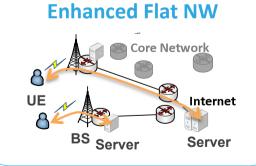
Specific Challenges of Wi-Fi compared to Cellular

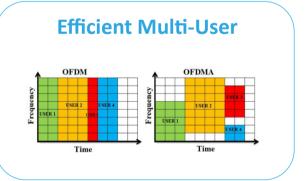


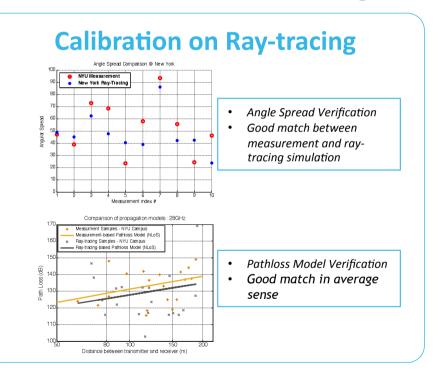





Key Enabling Technologies






Recent R&D Results - Above 6 GHz Channel Modeling

Ray-tracing Calibration based on Real Measurements in NYU Campus

After calibration, total 60610 Tx-Rx paired locations are used for channel modeling

Urban Micro Environment, New York 28 GHz Measurement @ NYU campus Ray-tracing Simulation @ New York City

Recent R&D Results - Above 6 GHz Channel Modeling

■ Global Collaboration with Leading Universities/Research Centers

NYU [~15.1Q]

- Freq. : 28 (+ 38 GHz)

- Scenario : ① Dense Urban (NY) ② Sub-Urban (Austin)

- Method : ① Sounder (Horn)

: ① Large Scale ② Small Scale

Samsung [~15.4Q]

- Freq. : 28 GHz

- Model

- Scenario : ① Dense Urban (Ottawa, Chicago, etc)

- Method : ① Ray-Tracing

: ① Large Scale ② Small Scale

USC [~16.2Q]

- Freq. : 28 GHz

- Scenario : ① Dense Urban (Los Angeles, CA)

2 Sub-urban 3 Campus

- Method : ① Sounder (Array)

- Model : ① Large Scale 2 Small Scale

CATR/BUPT [~15.1Q]

- Freq. : 28 GHz

- Model

- Scenario : 1 Indoor 2 Urban

- Method : ① Sounder (Horn)

- Model : ① Large Scale

2 Small Scale

Standards and Projects

KAIST [~15.3Q]

- Freq. : 28 GHz

- Scenario : 1 In-building

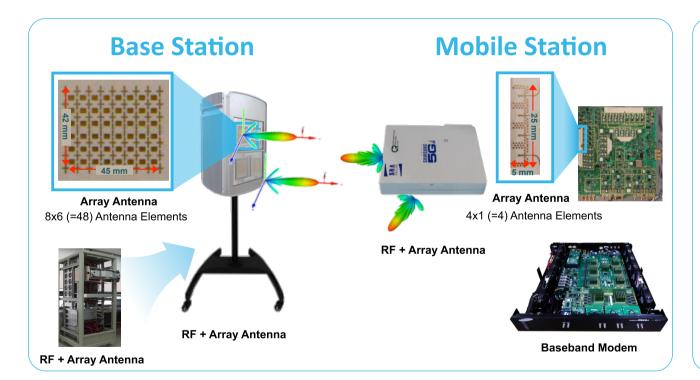
2 Campus

3 Urban

- Method : ① Sounder (Horn)

- Model : 1 Large Scale

2 Small Scale

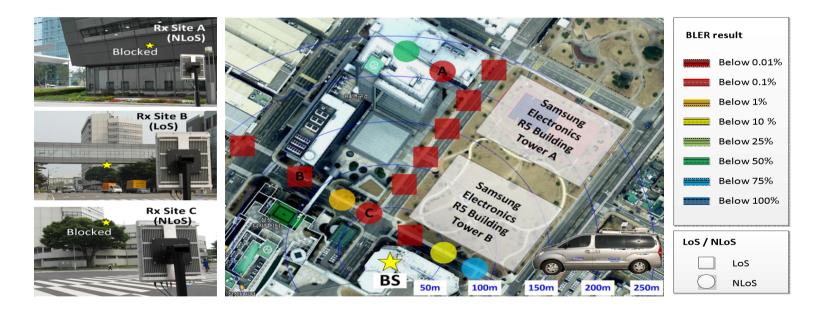

Recent R&D Results - mmWave Testbed

■ World's mmWave Testbed and High Speed Mobility Test

1.2 Gbps (2013) → 7.5 Gbps (2014)

1.2 Gbps at 110 km/h (2014)

Mobility Test



Recent R&D Results - mmWave Testbed)

- Outdoor Non Line-of-Sight (NLoS) Coverage Tests
 - Block error rate less than 0.01% up to NLoS 200m distance

Wonil Roh, et al., "Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results," IEEE Communications Magazine, Feb. 2014.