

Power to Methanol in German and European context

e-Methanol as a Carbon Product

Methanol Policy Forum
13-14th October 2015, Brussels

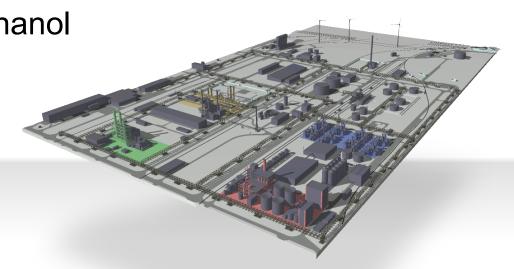
bse engineering Leipzig GmbH

Share our experience in a future market!

In a joint effort with our project supervisors, planners and engineers, we were able to assume a prominent position in the planning and realization process of Europe's largest bio-ethanol complex. You can become part of a growing renewable energies market by taking advantage of our service.

- Planning , authorization and execution of projects
- Administrative management
- Budgeting
- Investment planning
- Cost management
- Project management

Production start: spring 2005 Product: 800 m³ ethanol/ day Budget: over 185 Mill. Euro


industrial and constructional planning involving bio-ethanol and sugar industry • schematic design, realization and administrative management • project and cost management Mottelerstrasse 8 • 04155 Leipzig / Germany • phone +49 (0) 341 60912 0 • fax +49 (0) 341 60912 15 • www.bse-engineering.eu • office@bse-engineering.eu

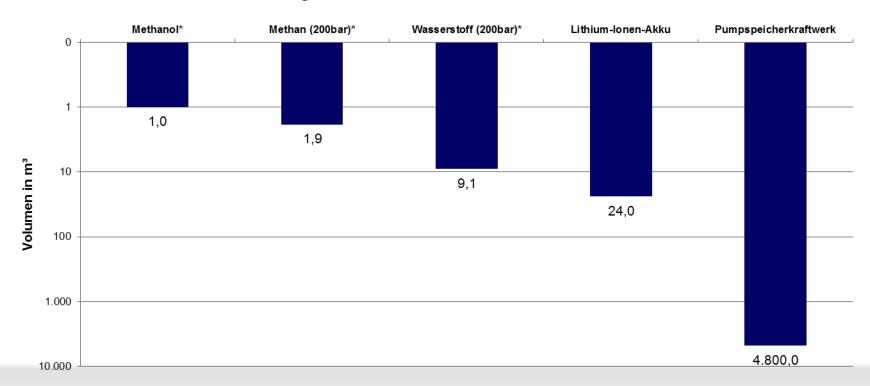
Content

Package 1
 Overview Power to Methanol

- Package 2
 Power to Methanol
 in EU context
- Package 3
 Power to Methanol in German context

Power Production in Germany

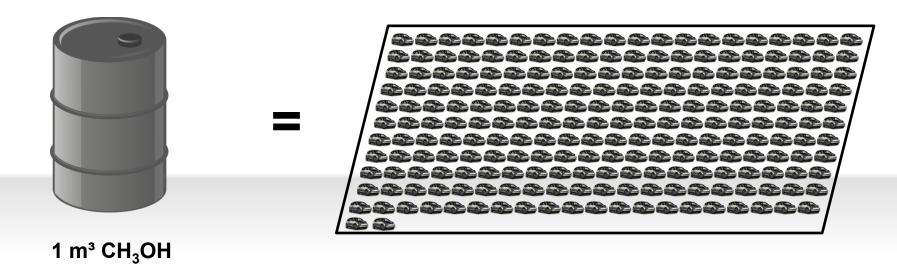
- Power export Germany in 2013 was 34 TWh
- Emission load for Germany 30 Mio to CO₂/a
- Additional saving demand 22 Mio to by 2020
- Missing grid infrastructure reduce the renewable power production capacity
- Transport sector drags behind power sector with share of renewable energy consumption
- 656 TWh consumption in the transport sector


Solution must be the Chemical Power Storage

Power Storage

Volume of different Storage Systems

Storage of 4.800 kWh


Solution must be the Chemical Power Storage

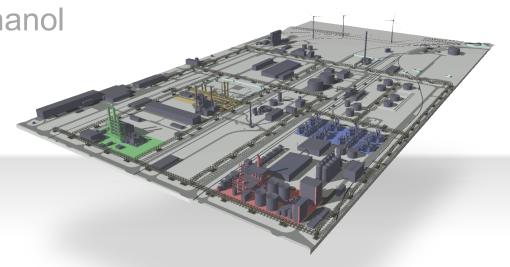
Energy Density

Chemical Power Storage vs e-mobility

1 cubicmeter of liquified power e-Methanol compares with 222 BMW i3!*

Market Opportunities

Description of the market opportunities of the e-Methanol


- 1. High energy content (15.67 MJ/l vs. 8.50 MJ/l H₂)
- 2. M3 "Drop-in" transportation fuel in addition to BioEtOH
- 3. Higher blend with adjustments in the vehicles
- 4. E-MTBE in competition to Bio ETBE and MTBE
- 5. Auxiliary material in the Biodiesel production
- 6. Power generation in small scale CHP's (BHKW'S)
- 7. Basic building block for chemical production

Content

Package 1
 Overview Power to Methanol

- Package 2
 Power to Methanol
 in EU context
- Package 3
 Power to Methanol in German context

Renewable Energy Directive (2009/30) & Fuel Quality Directive (2009/28)

The amended FQD and RED introduce RED-Annex IX advanced fuels and feedstocks:

- (a) renewable liquid and gaseous fuels of non-biological origin
- (b) carbon capture and utilization for transport purposes

Power to X
Carbon to fuel

Power to X and Carbon to fuel is there

The emission intensity of needed power is emission intensity of the national grid -Then PtX is not a sustainable product and is not a recognized product

Or

Power is supplied by a renewable energy production with no grid connection - then PtX is not in sufficient production

In contradiction to Annex IX is Article 15 RED, where the energy supplier is allowed to supply renewable power with guarantees of origin.

Stand Alone - Outlook

Definition of Methanol as e-Methanol in the RED/FQD?

Article 2 Number 10 FQD (NEW):

"renewable liquid and gaseous transport fuels of non-biological origin" means liquid or gaseous fuels other than biofuels whose energy content comes from renewable energy sources other than biomass, and which are used in transport;

ANNEX IX Part A. RED (NEW):

- "Feedstocks and fuels, the contribution of which towards the target referred to in the first subparagraph of Article 3(4) shall be considered to be **twice their energy content**:
- (r) Renewable liquid and gaseous transport fuels of non-biological origin.
- (s) Carbon capture and utilisation for transport purposes, if the energy source is renewable in accordance with point (a) of the second paragraph of Article 2."

Stand Alone - Outlook

The value of fuel is determined by Art. 7a FQD.

Counting the energy content of e-methanol twince onto the share of energy from renewable sources in all forms of transport in 2020 increase the value.

1 MJ e-methanol = 2 MJ e-methanol as renewable transport fuel

e-mobility: 5 times counting for renewable energy in electric vehicle and 2.5 times counting for renewable energy in electric train

Power to transport sector must be considered

Stand Alone - Outlook

Definition of Methanol as BioMethanol in the RED/FQD?

Article 7 paragraph 2 FQD:

- obligation to 6 % GHG-saving
- indicative target 2 % GHG-saving with technology capable of reducing life cycle greenhouse gas emissions per unit of energy from fuel

No changes on GHG-saving target but on renewable target

Article 4 paragraph 3 (e) (new):

indicative target of 0.5% RED-Annex IX

Power Input

According Annex V Part C No 11, the GHG intensity of the production power process has to be considered in the calculation of actual value.

To reach the 60% target for Biofuel the power has to be less than 60 gCO₂/kWh (standard value in Germany is 527 gCO₂/kWh).

The default value has to be defined for chemical energy storage in 2017.

NON GO aspect for e-fuel!!!!!

Contradiction to Article 15 RED, which ensures the use of RES by final consumer.

Power from the grid must consider guarantees of origin!

Power Price Components

Power for Chemical Power Storage

In order that power can be stored in chemicals, then the final product has to be taxed.

If this becomes the case than, there will be a sustainable business case for investments.

Clarification of the power price components!

Regulation to reduce CO₂ emissions from new passenger cars (333/2014)

In 2021 manufacturer of cars must comply with the threshold of 95 gCO₂/km for their sold car fleet. Basis for calculation is the actual GHG-emission of the used fuel. Fuels with GHG-savings from life-cycle assessment don't have a legal impact on the fleet mix. Three major exceptions are:

- Emission innovative technology packages, which shall be used to reduce the specific emission target of a manufacturer up to 7 gCO₂/km.
- Alternative fuel vehicle (a vehicle designed to be capable of running on at least one type of fuel that is either gaseous at atmospheric temperature and pressure, or substantially non-mineral oil derived)

 Not implemented for M 85, Biomethane
- The definition for electrical vehicle is zero CO₂ Emissions

Power-to-X is not recognized

Directive on internal market in electricity (2009/72)

The liberalization of the electricity market aims a Europe-wide competition in the electricity production or their resale and import. Therefore the separation between Producer, Transmitter and Supplier is implemented.

With the foundation of European Network of Transmission System Operators for Electricity (Entso-e) and the International Grid control Cooperation (IGCC) the market is liberalized, but not implemented in the infrastructure.

With the missing grid infrastructure large scale energy storage is needed

According to the Emission trade system the export from Power between the Member states is CO₂-free power supply for the national balance.

With the production of *e-fuel* power can be stored and power exports, which are disadvantageous in the national CO_2 balance, can be prevented and fossil fuel imports can be replaced.

Trend beyond 2020

EU Energy Roadmap 2050 (dated 2011) defines the post 2020 targets in a decarbonization strategy of the European Union

Carbon Capture and Storage (CCS) is considered as system solution from 2030 on, but acceptance of the population can not be assumed anymore.

Instead of that Carbon Dioxide Utilisation (CDU) CCRecycling, CCUtilization becomes the answer for a Low Carbon society.

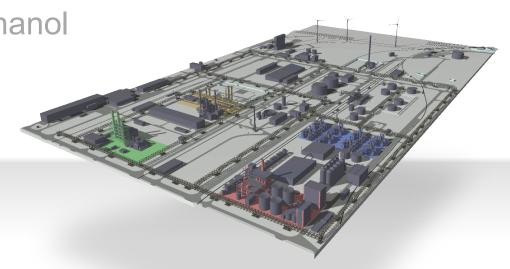
"Of special importance is the shift towards alternative fuels, including electric vehicles." "In transport, a mix of several alternative fuels will be needed to replace oil."

Commission July 2015

Electricity and other fuel use in transport

"The share of renewable electricity is expected to increase significantly until 2020 and beyond. Given the move towards a low carbon electricity mix, both electrification of transport and the use of renewable hydrogen could contribute to the decarbonisation options of the transport sector."

Uncertainty in the currently developing legal framework doesn't provide needed planning reliability. For this reason we suggest to initiate an interest group.


The foundation of an e-fuel Association is needed

Content

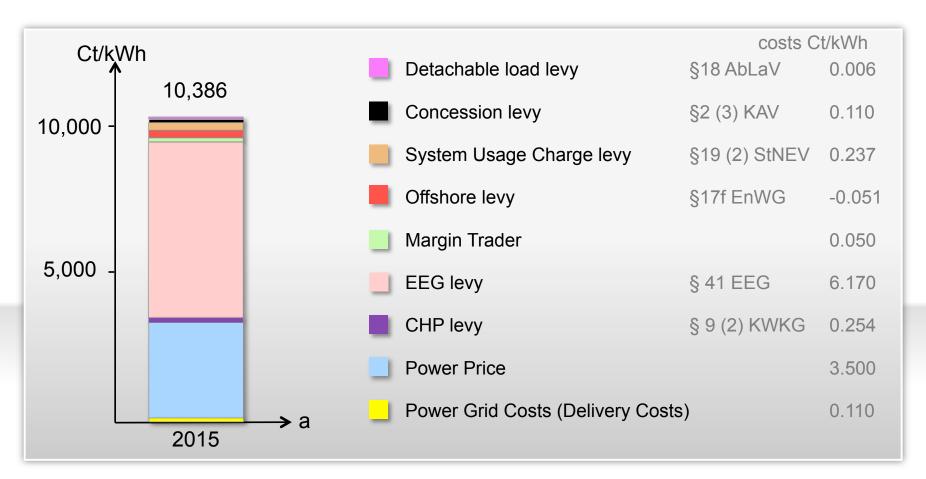
Package 1
 Overview Power to Methanol

- Package 2
 Power to Methanol
 in EU context
- Package 3
 Power to Methanol
 in German context

GAP

German Model supports PtX

- If renewable methanol market then power must be green without CO₂ footprint
- Alternative is fossile methanol market
- Green power = power under the Renewable Power Act
 - Renewable power can be feed-in with guaranteed feed-in tarifs, but can alternatively be market directly (Direktvermarktung). A certain amount of feed-in power must be market directly.
 - If no feed-in or direct marketing Guarantees of Origin can be issued


No Contradiction to Article 15 RED

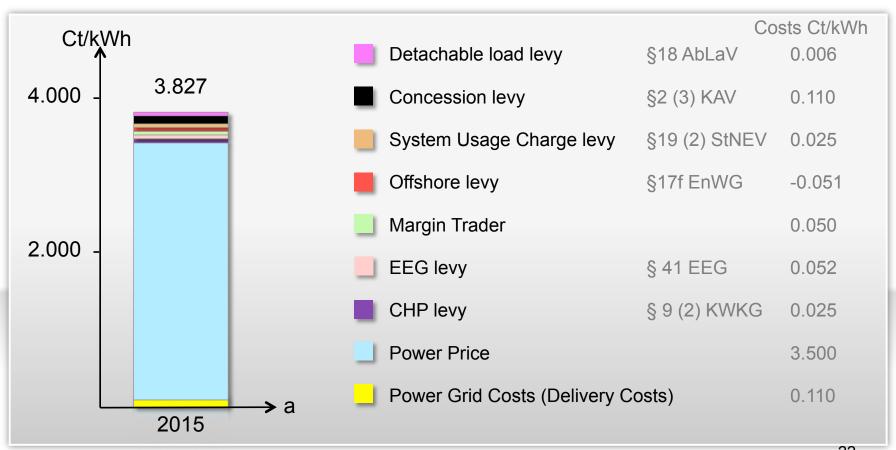
 Goal in Germany is flexible operation of power consumption (+/market of power range)

Power Price Components

including fees ex tax

Stand Alone - Outlook

Definition of Methanol as BioMethanol in the RED/FQD?


Article 7 paragraph 6 FQD (NEW):

- "6.The Commission shall be empowered to adopt no later than 31 December 2017 delegated acts in order to establish **greenhouse gas emission default values**, where such values have not already been established prior to 5 October 2015, as regards:
- (a) renewable liquid and gaseous transport fuels of non-biological origin;
- (b) carbon capture and utilisation for transport purposes."

Power Price Components

Composition energy intensive industry

Conclusion

- Chemical Energy storage is technical possible
- CO₂ as reasonable feedstock is available
- Industrial implementation is competitive
- Sustainable Framework is not in place

bse Engineering Leipzig GmbH

Thank you for your attention!

With friendly support of:

KIC InnoEnergy connects and educates actors of innovative energy business. www.kic-innoenergy.com

Christian Schweitzer

Mottelerstrasse 8 D-04155 Leipzig, Germany

phone +49 341 609 12 0 fax +49 341 609 12 15

email office@bse-engineering.eu www.bse-engineering.eu web

Regeneratives The Network Renewable Methanol builds up the entire value chain. www.regeneratives-methanol.de

The **MI** (Methanol Institute) promotes the global sale of Methanol. www.methanol.org