

Dino Flore

Chairman of 3GPP RAN (Qualcomm Technologies Inc.)

1

Introduction

- 3GPP continues to expand the LTE platform to new services, while improving its efficiency to meet the increasing mobile broadband demand
- At the same time 3GPP has started to work on the standardization of next generation cellular technology, aka 5G, to address the expanded connectivity needs of the future
- This presentation discusses the main features being considered for the evolution of LTE in Release 13, and 3GPP plans for 5G

3

LTE Release 13: addressing the mobile broadband demand

5 G Huddle, Oct. 2015

Offload to unlicensed spectrum

- Licensed spectrum remains 3GPP operators' top priority to deliver advanced services and user experience
- Opportunistic use of unlicensed spectrum will be an important complement to meet the growing traffic demand
- Moving forward 3GPP operators will have two options to offload traffic to unlicensed spectrum:
 - 1. Wi-Fi (via LTE/Wi-Fi interworking)
 - Framework developed since the first release of LTE, with tighter and tighter forms of interworking added in subsequent releases
 - In Release 13 this includes aggregation of LTE and Wi-Fi radio links
 - 2. Licensed Assisted Access to unlicensed spectrum, aka LAA
 - Modified LTE radio to operate in unlicensed spectrum (5GHz)
 - Includes features such as Listen-Before-Talk (LBT), Discontinuous TX, Dynamic Frequency Selection, Carrier selection, Transmit Power Control...
 - Goal is to achieve fair coexistence between LTE and Wi-Fi as well as between LTE operators
 - License-assisted access operation
 - Aggregation of a primary cell and secondary cell
 - The primary operates in licensed spectrum to deliver critical information and guaranteed Quality of Service
 - The secondary cell operates in unlicensed spectrum to opportunistically boost data rate
 - In Release 13 the focus is on downlink operation. Uplink support likely to follow in Release 14

Others

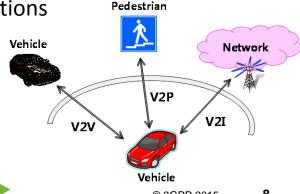
- LTE Carrier Aggregation enhancements
 - Aggregate up to 32 Component Carriers
 - Useful in particular for LAA where large blocks of spectrum are available
- Elevation Beamforming / Full-Dimension MIMO
 - Support of two-dimensional antenna arrays to exploit the vertical dimension for beamforming and MIMO
 - Support of high-order MIMO systems with up to 16 antenna ports at the eNB
- Study on Low latency LTE*
 - Study of techniques that can significantly reduce the latency of the LTE air interface, including solutions for fast uplink access, shortening of the Time-Transmission Interval (TTI) and reduced processing time
 - The goal is to improve performance and user experience of existing services as well as to enable new delay critical services
- Study of downlink multi-user transmission using superposition coding*

^{*} Note: normative work (if any) for this item is targeted for Release 14

LTE Rel-13: enablers of new services and connectivity paradigms

5 G Huddle, Oct. 2015 © 3GPP 2015

Supporting the Internet of Things



- Further LTE enhancements for Machine Type Communications
 - Building on the work that started in Rel-12 (UE Cat 0, New power saving state for MO-data)
 - 1.4MHz UE narrowband operation (within wider LTE carrier bandwidth deployments)
 - Enhanced coverage (15dB better link budget over existing LTE)
 - Further power optimization (focusing on MT-data)
- Narrowband IoT (NB-IoT)
 - New radio optimized for the low-end of the IoT market
 - Focus is on very low datarate (~100s bps) applications with limited mobility support
 - 180 kHz UE operation
 - Can be deployed "in-band", utilizing resource blocks within a normal LTE carrier,
 - Or "standalone" in dedicated spectrum. Particularly suitable for the re-farming of GSM carriers
 - Extended coverage (20dB better link budget over existing GPRS)
 - Very low module cost & power consumption

Device-to-Device operation

- Enhancements to the LTE D2D framework (ProSe) standardized in Rel-12
 - To support more advanced proximity services for Public Safety (PS) and consumer usecases
 - Discovery: Restricted Discovery (social-type model); Multicarrier operation, concurrent inter-band D2D and CA combinations
 - Group Communication (PS only): UE-to-Network relays
 - Work to address the necessary requirements for Mission Critical Push-To-Talk (MCPTT)
 - MCPTT: ongoing project to complete support of PS services in the 3GPP platform (based on the requirements coming from various administrations and industry stakeholders)
- Study to expand the LTE D2D framework to V2X applications
 - Initial priority on V2V safety applications
 - Target for initial specification is Release 14

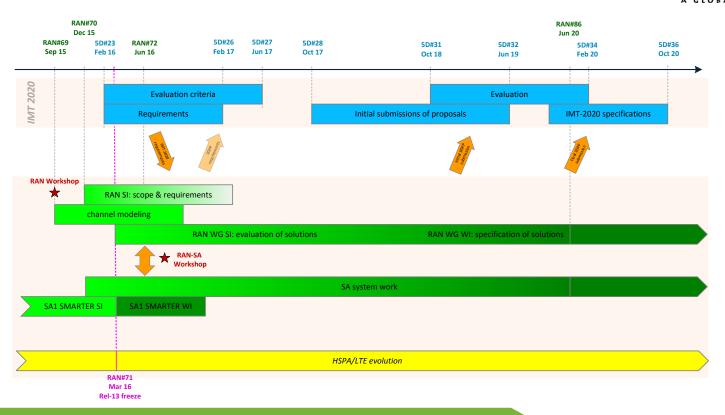
Others

- Indoor positioning
 - Driven by the <u>FCC request</u> to improve positioning accuracy for emergency calls
 - Includes a variety of features considered for standardization
 - Enhancements to OTDOA and E-CID based positioning
 - WiFi-/BT-/Barometric-Sensor based positioning
 - Terrestrial Beacon Systems based positioning
- Single Cell Point To Multipoint (SC-PTM)
 - Specify support of SC-PTM operation based on the LTE downlink shared channel
 - eMBMS was developed to efficiently deliver multicast services over areas typically spanning multiple cells. But there could be a number of applications that may benefit from efficient multicast service support over a single cell

10

Getting ready to 5G

© 3GPP 2015


Introduction

- 3GPP started to make plans for the standardization of next generation cellular technology, aka 5G
- The objective is to address the expanded connectivity needs of next decade
- A tentative timeline for 5G was endorsed by 3GPP, including plans for a technology submission to the IMT 2020 process in ITU-R
- A 3GPP Workshop took place on September 17-18 in Phoenix (Arizona), US, to discuss vision and planning for the 5G standardization work in 3GPP
 - Emerging consensus & next steps are discussed in the following slides

5G timeline in 3GPP

Usecases & Services

- Three emerging high level usecases for Next Generation Radio Technology (also from IMT 2020 discussion):
 - 1. Enhanced Mobile Broadband
 - 2. Massive Machine Type Communications
 - Ultra-reliable and Low Latency Communications
- The common understanding is that the Next Generation Radio Technology should be able to support a variety of new services
 - Automotive, Health, Energy, Manufacturing ...
 - Some of these new services are being described by SA1 in the SMARTER project

New radio

- Emerging consensus that there will be a new, non-backward compatible, radio as part of Next Generation Radio Technology
 - Strong LTE evolution continued in parallel

- The requirements and scope of the new radio will be established by RAN in the Study Item starting in December
 - Working Groups will then proceed with the evaluation of technology solutions in the Study Item starting in March

Phasing

15

- Emerging consensus that there should be two phases for the normative work
 - Phase 1 to be completed by H2 2018 to address a more urgent subset of the commercial needs (to be agreed)
 - Phase 2 to be completed by Dec 2019 for the IMT 2020 submission and to address all identified usecases & requirements
- The above implies the following, tentative, release timing

Note: dates above refer to "stage-3 functional freeze" of specs. Official 3GPP release freeze is typically one quarter after that.

It also requires that the new radio's design should be forward compatible to optimally support the usecase that will be added in the second phase

5 G Huddle, Oct. 2015 © 3GPP 2015

Prioritization

- Phasing of the normative work will lead to some form of prioritization for phase I
- However at this stage there is lack of consensus on
 - Whether prioritization should already occur in the study phase
 - Whether there should be prioritization of frequency ranges
 - Which usecases should be prioritized

 ↑ Ideally the above should be resolved by March 2016 to plan the technology Study Item accordingly

Operation above 6 GHz

17

- Next generation radio technology will include operation above 6 GHz
- A new study was recently approved on channel modeling for spectrum above 6 GHz
 - The goal is to have sufficient progress by the time RAN Working Groups start to evaluate the new radio technologies
- Next steps for the channel modelling study (RP-151606):
 - In Q4 2015, RAN will identify status & expectations on high frequencies (e.g. spectrum allocation, scenarios of interest, measurements, etc)
 - From Q1 2016, RAN1 will develop a channel model(s) for frequencies up to 100 GHz

Narious channel modeling efforts are ongoing in the industry and RAN may leverage some of this work

5 G Huddle, Oct. 2015

Service & system aspects

18

- Next generation 3GPP platform needs to enable a broad range of new services and connectivity paradigms (besides addressing the future mobile broadband demand)
- 3GPP has started an effort to articulate the service and connectivity vision for 5G by defining the service requirements of next generation platform
 - A study on next generation network architecture is likely to start in December
- 3GPP may then need to design a new system architecture for 5G based on two potential streams of requirements
 - Radio requirements established by 3GPP RAN
 - 2. Service/system requirements established by 3GPP SA1/SA2
- A 3GPP workshop on system architecture aspects it is anticipated for H2 2016

5 G Huddle, Oct. 2015 © 3GPP 2015

Thanks

© 3GPP 2015

19